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Abstract There has been a recent push for human
consumption of the invasive Pacific lionfishes Pterois
miles/volitans as a management strategy throughout the
greater western tropical Atlantic region, where lionfish
have become a significant ecological problem. Recent
tests have indicated that invasive lionfishes may be
ciguatoxic, threatening the viability of a fishery-based
managemen t s t r a t egy. Howeve r, i f i nna t e
scorpaenitoxins in the flesh of lionfish are mimicking
ciguatoxin, consumption may be safe after all. There
have been no confirmed cases of ciguatoxin poisoning
from eating lionfish, indicating that false positive tests
may be occurring. Based on the high degree of similarity
in the biochemical effects of ciguatoxin and
scorpaenitoxins, it is possible that bioassays for
ciguatoxin are inaccurate in scorpaeniform fishes. Pre-
liminary results suggest that scorpaenitoxins or other
venom components are capable of contaminating
ciguatoxin assays, and thus we urge caution regarding
interpretation of ciguatoxin assays in invasive

lionfishes. We recommend that ciguatera tests of lion-
fish be done after cooking the flesh, which denatures the
scorpaenitoxins yet leaves ciguatoxin intact.
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Introduction

Invasive species are one of the most economically dam-
aging threats to ecosystems worldwide, costing an esti-
mated $1.4 trillion annually (Pimental et al. 2001).
Invaders may directly consume or outcompete native
species, alter habitats and species interactions, and ulti-
mately disrupt ecosystem structure and function (Lovell
and Stone 2005). Invasions often exacerbate other
stresses on ecosystems, such as overfishing, climate
change, and pollution (Ehrenfield 2010), and further
threaten already declining species (Wilcove et al.
1998). While the best management strategies are pre-
vention, early detection, and rapid removal of invasives,
the species that evade these measures may become
established pests that require drastic management ac-
tions. Marine ecosystems now contain hundreds of non-
native species, with more than 80 % of systems
possessing unwelcome invaders (Molnar et al. 2008).
Successful marine fish introductions were once consid-
ered rare, but have increased in prevalence over time
(Ruiz et al. 1997).

In the 1980s, two sister species of Indo-Pacific lion-
fish, P. volitans and P. miles (hereafter P. volitans/miles)
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were introduced to the Atlantic Ocean in the vicinity of
Florida (Morris and Whitfield 2009), likely via the
aquarium trade (Semmens et al. 2004). Lionfishes are
well suited to invasion, being fast-growing predators
that breed year-round and consume a wide variety of
small prey, predominantly of fishes, while having no
substantial natural predators in their non-endemic range
(Morris and Whitfield 2009; Albins and Hixon 2013;
Côté et al. 2013; Hackerott et al. 2013; but see Mumby
et al. 2011). The introduced lionfishes have spread rap-
idly and are now observed as far south as Venezuela, as
far north as Rhode Island, and throughout the greater
Caribbean region and the Gulf ofMexico (Morris 2012).
They are predicted to expand their range even further
along the Atlantic coast of South America (Kimball
et al. 2004; Morris 2012). On small patch reefs, invasive
lionfish can reduce native fish recruitment by about
80 % in 5 weeks (Albins and Hixon 2008), and by over
90 % in 8 weeks (Albins 2013). This mortality causes
steep population declines in native prey species across
broader spatial scales (Green et al. 2012). There is also
concern that lionfish, through predation on herbivorous
fishes, may cause phase shifts from coral-dominated to
algal-dominated reefs (Lesser and Slattery 2011; Albins
and Hixon 2013). Therefore, the invasion of lionfishes is
considered one of the top threats to global biodiversity
(Sutherland et al. 2010).

Reductions in lionfish population sizes mitigate some
of their ecological impacts, therefore removal via
targeted derbies and directed fisheries is a primary man-
agement strategy (Morris and Whitfield 2009; Barbour
et al. 2011; Morris 2012). Removal strategies for pest
fishes in general are difficult and often hindered by a
lack of selective methods that target the invasive species
(Britton et al. 2010). A specific fishery for the nuisance
species is thus the most effective means of targeted
removal, though it relies on the manpower of local
community members to maintain efforts. The Reef En-
vironmental Education Foundation (REEF) was one of
the first organizations to support local lionfish round-
ups or ‘derbies’ in heavily infested places like the Ba-
hamas (Morris andWhitfield 2009), which collect thou-
sands of lionfish in a single day. The organization went
on to release a lionfish cookbook, hoping to appeal to
restaurant owners and the public alike (Ferguson and
Akins 2010). In 2010, the National Oceanographic and
Atmospheric Administration (NOAA) joined REEF,
launching its “Eat Lionfish” campaign promoting the
nutritional value and taste of lionfish (Morris et al.

2011). Local communities have enthusiastically accept-
ed these campaigns, turning local fishermen acting as
conservation advocates (Moore 2012).

At the same time, Florida Sea Grant, in conjunction
with the Food and Drug Administration (FDA), caution
that REEF and NOAA’s campaigns are premature,
based on results of a preliminary test indicating that
lionfish are can contain the dreaded ciguatera toxin.
The high prevalence of ciguatera reported in the Florida
Sea Grant unpublished report is surprising given that no
confirmed poisonings by lionfish have been document-
ed in 5 years of local lionfish round-ups and associated
barbeques (Gill 2012). While the lead researcher from
the FDA initially stated that the administration does not
support REEF and NOAA’s campaigns, the administra-
tion has since waivered, declining to condemn the con-
sumption of lionfish (Silk 2012). Yet the report caused
great concern in regions where ciguatera is a known
problem, such as the Virgin Islands, thus threatening
the viability of controlling the lionfish invasion via a
fishery-based management strategy.

Ciguatera fish poisoning (“CFP”) is the most com-
mon marine poisoning worldwide, with more than
50,000 cases reported annually (Ting and Brown
2001), though estimates place the actual frequency of
CFP as high as 500,000 cases per year (Arena et al.
2004). The responsible agents are ciguatoxin and its
close congeners (“CTXs”), al l of which are
bioaccumulating lipophilic toxins produced by reef-
associated dinoflagellates. The toxins are colorless and
odorless, and are thus impossible to detect without bio-
chemical assays. Because the toxins are heat-stable, not
inactivated through any normal means of fish prepara-
tion, prior detection of fish with high toxin concentra-
tion is the only way to prevent poisoning (Juranovic and
Park 1991). In communities where CFP is endemic,
large, predatory reef fish are avoided by humans, reduc-
ing the number of fish available for sustenance and
increasing fishing intensity on other species.

The dinoflagellates that produce CTXs are found
globally in tropical and subtropical latitudes, and are
endemic to American island states and territories, in-
cluding Hawai’i, Florida, Puerto Rico, Guam, the US
Virgin Islands, American Samoa, and the Common-
wealth of the Northern Mariana Islands. In Puerto Rico,
it is estimated that almost one tenth of the residents have
experienced CFP, whereas across the Pacific islands as a
whole, 70 % of the population has been poisoned
(Fleming et al. 1998).
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Although P. volitans/miles are only mid-sized preda-
tors (mesopredators), they are typically piscivorous, and
so have the potential to be ciguatoxic. Their relatively
long lifespan (decades) increases their bioaccumulation
potential, and thus careful study of CTX prevalence in
these species is warranted and necessary to ensure safe
consumption. There have been no published peer-
reviewed studies to date on the prevalence of CTXs in
lionfishes, either in their native or invasive ranges.
However, results from the 2012 Florida Sea Grant/
FDA investigation concluded that among 194 fish test-
ed, 42 % showed detectable levels of CTXs and 26 %
were above the FDA’s illness threshold of 0.1 parts per
billion (Gill 2012). The method of testing was not
reported. Here, we present evidence that the venom
ubiquitous to lionfish species may mimic ciguatoxin in
bioassays, potentially causing false positives.

Scorpaenitoxins vs. ciguatoxin

Most scorpaeniform fishes are known to be toxic, espe-
cially in the form of fin spine venoms, and it has been
suggested that similar toxins occur across different lin-
eages within this order. For example, antivenoms devel-
oped for stonefishes of the Family Synanceiidae
(“SFAV”) have been shown to interact with toxin ex-
tracts from members of several scorpaeniform families
(Shiomi et al. 1989; Church and Hodgson 2001; Church
and Hodgson 2003; Andrich et al. 2010). The isolation
of similar protein toxins across distant lineages (Kiriake
and Shiomi 2011) demonstrates that a unique toxin
family (scorpaenitoxins) is highly conserved in this
taxonomic group.

Clinically, ciguatera poisoning and lionfish enven-
omation generate overlapping symptoms, indicating that
similar effects may be occurring at the cellular level. The
predominant symptom of lionfish envenomation is in-
tense, throbbing pain at the sting site, which may radiate
from the site of injury and persist up to 12 h (Halstead
1988; Trestrail and Al-Mahasneh 1989). However, an-
esthesia, paresthesia, and hypesthesia have all been re-
ported, and all are symptoms of ciguatera poisoning
(Kizer et al. 1985; Kasdan et al. 1987; Trestrail and
Al-Mahasneh 1989; Patel and Wells 1993). While sys-
temic effects of envenomations are less common, they
are similar to clinical presentations of CFP. These in-
clude headache, nausea, vomiting, abdominal pain, de-
lirium, seizures, limb paralysis, hypertension and hypo-
tension, respiratory distress, heart problems, muscle

weakness, chills and death (Kizer et al. 1985; Kasdan
et al. 1987; Trestrail and Al-Mahasneh 1989). Intrave-
nous introduction of scorpaeniform venom extracts in
mice yield similar effects to injection of ciguatoxin,
including ataxia, limb paralysis, muscle weakness, and
death, with muscular effects more pronounced for lion-
fish venom than stonefish venom (Saunders and Taylor
1959).

Mostmethods of ciguatera detection depend on phys-
iological effects in test animals, using in vitro bioassays
to determine presence and concentration of CTXs. In-
traperitoneal injection of mice with crude fish extracts
has been used by the Hawai’i Department of Health to
detect CTX (Hokama 2004), with key indicators of
toxicity being weakness, paralysis and death. However,
these effects are also seen with intraperitoneal injections
of scorpaeniform extracts (Saunders and Taylor 1959;
Saunders 1960; Shiomi et al. 1989; Khoo et al. 1992;
Khoo 2002). In guinea pig atria, both CTX and
stonustoxin cause negative inotropy associated with cell
depolarization and calcium overload (Austin et al. 1965;
Lewis 1988). CTX is also a highly potent sodium chan-
nel activator, and a number of assays, like the rapid
hemolysis assay and the neuroblastoma assay
(Shimojo and Iwaoka 2000), assess sodium channel
activation as an indicator of CTX. Yet stonustoxin from
scorpaeniform fishes has also been shown to activate
sodium channels, and like CTX, activating effects are
blocked by sodium channel blockers such as tetrodotox-
in (Hopkins et al. 1996).

Unlike CTX, scorpaenitoxins are readily degraded
when heated or ingested (Saunders and Taylor 1959;
Saunders 1960; Glaziou and Legrand 1994; Chun
2005). Thus while scorpaenitoxins might throw off a
ciguatoxin test, they pose no threat to the consumer.
Based on the high degree of similarity in the effects of
CTX and scorpaeniform venoms, it is possible that
bioassays for CTX are inaccurate in scorpaeniform spe-
cies. The production of venom components could ex-
plain the putative prevalence of CTX in invasive
lionfishes despite the complete lack of poisoning inci-
dents. If this effect occurs, then it has likely gone un-
documented because there are few commonly con-
sumed ciguatoxic fish that might produce such toxins.
Our preliminary results suggests that scorpaenitoxins (a)
are present in the tissues commonly used for ciguatera
testing, and (b) can be detected after extraction protocols
commonly used in ciguatera testing. These data indicate
caution and skepticism when interpreting results from
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ciguatera testing in scorpaeniform fishes, including in-
vasive lionfishes. The ultimate solution is more reliable
and specific testing for ciguatera, allowing for improved
management of these highly invasive species.

Materials and methods

Protein extractions

Crude tissue extracts of skin, muscle, liver and spines
were taken from adult invasive P. volitans/miles (15–
30 cm in length, n=14), and as a positive control, the
confamilial Scorpaenopsis diabolus (n=3). P. volitans/
miles were spear-fished off the coast of Beaufort, North
Carolina, and the specimens of S. diabolus were
spearfished from locations around Oahu. All animals
were frozen on dry ice immediately after capture and
preserved at −80°C until analyzed. Spine, skin, muscle
and liver samples were collected from frozen individ-
uals and homogenized in one of four extraction buffers:
phosphate buffered saline (PBS) with 10 mM EDTA
and 1 mM PMSF (Stable Salt Buffer, SSB), a 70 %
methanol/30 % PBS, 100 % methanol, and 100 % ace-
tone. Homogenized tissues were shaken overnight at
4 °C. Samples were centrifuged at 14,000×g for
10 min and the supernatant was transferred to a clean
vial. Methanol and acetone extractions were evaporated
in a rotary evaporator until nearly-dry, and were resus-
pended in freezer storage buffer (SSB+20 % glycerol),
while the saline supernatants were dialyzed into the
same storage buffer. Total protein concentration was
determined using a modified Lowry assay (Bio-Rad).
All samples were stored at −20°C until use.

Protein size sorting and Immunoblotting

Relative scorpaenitoxin levels in each sample were an-
alyzed using a western blotting protocol as employed by
previous scorpaenitoxin investigations (Shiomi et al.
1989; Church and Hodgson 2001, 2003; Andrich et al.
2010). Studies have shown that scorpaenitoxins from
distantly related fishes, including lionfish, scorpionfish
and soldierfish, all cross-react with stonefish antivenin
(SFAV) (Shiomi et al. 1989; Church and Hodgson 2001,
2003; Andrich et al. 2010), with scorpaenitoxin subunits
around 75 kDa in size. Sodium dodecyl sulfate poly-
acrylamide gel electrophoresis (SDS-PAGE) was car-
ried out to separate venom proteins by size, using the

method developed by Laemmli (1970) on 7.5 % TGX
gels (Bio-Rad). Samples were pre-treated using
Laemmli sample buffer (Bio-Rad) at 100°C for 5 min.
Native PAGE was also performed to resolve intact
scorpaenitoxins, with samples prepared in Native buffer
(Bio-Rad) and run under non-reducing conditions in
Tris/Glycine buffer (Bio-Rad). The molecular masses
were estimated by a relative mobility method, compar-
ing the migration of the obtained bands with that from a
mixture of protein molecular markers. After running,
proteins were visualized by staining with Coomassie
Brilliant Blue R-250.

For immunoblotting, proteins were electrotransferred
(4°C, overnight) onto a PVDF membrane, which was
then blocked with PBS–Casein (1 % w/v, 1 h). After
washing the membrane with PBS–Tween 20 (0.05 % v/
v), it was probed overnight at 25°C with SFAV diluted
in PBS (1:500) and another washing step was per-
formed. The bound antibodies were probed (1 h,
25°C) with a diluted peroxidase-labeled anti-horse IgG
preparation (1:1000 in PBS), and resolved using the
Clarity Western ECL Substrate (Bio-Rad). Blots were
visualized using GeneSnap (SynGene) with relative ex-
pression levels calculated using GeneTools (SynGene).

Results

SDS-PAGE investigation of the proteins in the skin,
muscle, spine and liver tissues of P. volitans/miles re-
vealed the presence of scorpaenitoxin and other venom
proteins in all tissue types. While clear differences in the
types of proteins expressed in each tissue type were
visualized with SDS-PAGE (Fig. 1a), when analyzed
with western blotting, stonefish antivenom reacted to a
number of these proteins ranging in size, most of whose
functions are unknown. The strong reactivity by two
proteins roughly 75 kDa in size is consistent with the
alpha and beta subunits of PvTx identified by Kiriake
and Shiomi (2011) (Fig. 1b). These scorpaenitoxin
bands (Fig. 2a) were strongest in spine tissues (67.2±
46.3 times more optically dense than in liver tissues),
but were also present in skin and muscle tissues at
around 1/10th the concentration (Fig. 2c). Intact
scorpaenitoxins of ~150 kDa were also detected in
spine, muscle and skin (Fig. 2b). Thus, while the spines
expressed higher levels of scorpaenitoxins, they were
also readily detected in the skin and muscle tissues, and
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therefore could potentially contaminate ciguatoxin as-
says, which use those tissues for analysis.

Analysis of extracts from P. volitans/miles tissues
using four commonly used methods for ciguatoxin re-
vealed that scorpaenitoxins showed remarkable levels of
intact proteins. While it was expected that proteins
would be isolated using a saline extraction buffer, they
were equally detected in 70 % methanol extractions
(Fig. 3). Acetone extractions (100 %), the most com-
monly used in CTX analysis, also contained detectable
levels of scorpaenitoxins, albeit at much lower levels
(Fig. 3b). No scorpaenitoxins could be detected in the
methanol extracts. The presence of scorpaenitoxins in
the three extracts further suggests that venom proteins
could currently contaminate assays for ciguatoxin
activity.

Discussion

The analyses reported here indicate that, while
scorpaenitoxin venom components are highly concen-
trated in the spines of lionfishes responsible for the
Atlantic invasion (P. volitans/miles), they can also be
found throughout the body, including tissues commonly
tested for the presence of ciguatoxin. Given that
scorpaenitoxins and ciguatoxin cause similar biochem-
ical reactions, it is possible that standard ciguatera tests
of lionfish result in false positives. If so, the falsehood
that lionfish are unsafe to eat would hinder directed
fisheries that could help mitigate the impact of this
invasive (Morris 2012). A simple solution is to cook
lionfish before conducting a ciguatera test, which dena-
tures scorpaenitoxins, leaving only ciguatoxin, if present
(Saunders and Taylor 1959; Saunders 1960).

Our f indings conf i rmed the presence of
scorpaenitoxins in multiple tissues. To date, seven lethal
scorpaenitoxin proteins have been isolated from three
species of stonefish, two species of lionfish and one
species of scorpionfish: stonustoxin (SNTX Synanceja
horrida, Poh et al. 1991; Ghadessy et al. 1996),
verrucotoxin (VTX, Synanceja verrucosa, Garnier
et al. 1995, 1997), neoverrucotoxin (neoVTX,
Synanceja verrucosa, Ueda et al. 2006), trachynilysin
(TLY, Synanceja trachynis, Kreger 1991), PvTx
(P. volitans, Kiriake and Shiomi 2011), PaTX
(P. antennata, Kiriake and Shiomi 2011), and Sp-CTX
(Scorpaena plumieri, Andrich et al. 2010). All are large,
multi-subunit proteins that are thought to cause

cytotoxicity through pore formation and sodium chan-
nel activation. Of the seven, the complementary DNA
(cDNA) of five toxin mRNA sequences have been
generated. Subunits within the same taxonomic family
are>87 % homologous (Ueda et al. 2006), while those
between families are>45 % homologous (Kiriake and
Shiomi 2011). This family of proteins, the
scorpaenitoxins, is unknown in any other animal
lineage.

It is unclear why scorpaenitoxins are present in tis-
sues other than spine venom glands, though there are
several possible explanations. While scorpaenitoxins
are viewed as venom proteins, it is possible that they
serve other functions, such as immunological defense.
Many venom proteins are recruited from key regulatory
processes (see Fry et al. 2009). Currently, the evolution-
ary history of the scorpaenitoxins is unknown, and only
one terminal domain is homologous to any known pro-
tein. If the venoms of fish evolved through similar
pathways involving the duplication and modification
of encoding genes, it would not be surprising if endog-
enous proteins similar to the venom scorpaenitoxins are
present elsewhere. While western blotting is able to
detect the presence of similarly sized proteins, it is
unable to determine whether the proteins detected in
the skin and muscles are identical to the one present in
the spines. Therefore, the proteins detected in body
tissues may not be the venom, though they must contain
enough similarities to interact with the stonefish venom
antibodies. It is also possible that the detectable levels
represent incomplete sequestration of venom compo-
nents. Previous research has indicated that lionfish are
resistant to their own venom (Allen and Eschmeyer
1973), a trait not universal in venomous organisms. It
is possible such resistance is a necessity if venom se-
questration is incomplete. Whatever the ultimate cause
of scorpaenitoxins in body tissues, the presence of these
proteins may result in the contamination of ciguatoxin
assays.

The lipophilic nature of scorpaenitoxins further con-
tributes to concerns about contamination of ciguatera
tests. Though methanol- and acetone-based extraction
methods are designed to extract lipids, it is well
established that other highly lipophilic compounds, in-
cluding proteins, can be solubilized in these organic
solvents (Erickson 1993) . The presence of
scorpaenitoxins in 100 % acetone extracts is particularly
troubling, as this is a common first step for CTX detec-
tion. These results stress the importance of clean-up
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protocols and multiple extraction steps to ensure the
purity of any samples tested for CTX. Again, the best
precaution is to cook a lionfish before testing for the
presence of CTX.

Though scorpaenitoxins are the most lethal compo-
nent of scorpaeniform venoms, they are not the only
toxic constituents that may play a role in the in vitro
similarities with ciguatoxins. Venoms are complex
chemical cocktails with multiple compounds contribut-
ing to toxicity (Casewell et al. 2012). Biologically active
pept ides have been isola ted from mult ip le
scorpaeniform fishes. Juzans et al. (1995) isolated a

Fig. 1 SDS PAGE analysis of
P. volitans/miles tissue extracts on
TGX protein gels, showing the
presence of venom proteins in all
tissues tested. Darker bands
indicate increased amounts of
protein. a Coomassie stain of total
protein, revealing the similarities
and differences in the
concentration of different proteins
in different tissue types. b
Western blot with stonefish
antivenin, which highlights the
proteins similar to those in
stonefish venom. Scorpaenitoxin
subunits are ~75 kDa in size.
Lanes: 1. spine; 2. skin; 3. muscle;
4. liver; 5; S. diabolus spine
(positive control)

Fig. 2 Relative scorpaenitoxin content in different tissues from
invasive lionfish P. volitans/miles, showing that scorpaenitoxins
are present in the spines, skin, and muscle. a Representative
western blot after denaturing SDS-PAGE showing the detection
of the alpha and beta subunits of PvTx in the various tissue types.
Lanes: 1. spine; 2. skin; 3. muscle; 4. liver. b Representative
western blot after Native-PAGE showing the detection of complete
PvTx in the various tissue types. Lanes: 1. spine; 2. skin; 3.
muscle; 4. liver. c Relative scorpaenitoxin levels across tissue
types. Values represent mean densitometry values of protein bands
(±1 standard error of the mean) detected by western blotting of
SDS-PAGE; band intensities standardized by the liver sample
from each fish, which we use as a reference; n=4 for each bar

Fig. 3 Relative scorpaenitoxin content in different extraction
methods from invasive lionfish P. volitans/miles, showing that
scorpaenitoxins survive extraction protocols designed for
ciguatoxin assays. a Representative western blot showing the
detection of the alpha and beta subunits of PvTx in the various
extraction methods. Lanes: 1. SSB buffer; 2. 70 % Methanol; 3.
100 % Methanol; 4. 100 % Acetone. b Relative scorpaenitoxin
levels across extraction methods. Values represent mean densitom-
etry values of protein bands (±1 standard error of the mean)
detected by western blotting; band intensities standardized by the
methanol sample, which we use as a reference; n=3 for each bar
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peptide from Synanceia trachynis that, like CTX, causes
spontaneous release and depletion of acetylcholine from
motor nerve terminals. Balasubashini et al. (2006) iso-
lated an antiproliferative peptide (7.6 kDa) from
P. volitans venom. In P. volitans, several proteins of
various sizes cross-react with stonefish antivenom and
may indicate venomous use (Fig. 1b). In other investi-
gations of lionfish venom, proteolytic enzymes
weighing roughly 45 kDa have been detected though
not purified (Balasubashini et al. 2006), and other pro-
teins weighing 29 kDa, 66 kDa, 97 kDa and 116 kDa
have been separated using SDS-PAGE, though their
functions are unknown (Choromanski 1985). Non-
proteinaceous components have also been found in all
scorpaeniform venoms examined. Additionally, there is
strong evidence for the presence of neurotransmitters in
the venoms of lionfish (Cohen and Olek 1989; Church
and Hodgson 2002) and other Scorpaeniformes (Garnier
et al. 1996), including acetylcholine and noradrenaline.
Although little is known about lipid toxins in these
species, Nair et al. (1985) isolated an unknown lipophil-
ic ichthyotoxin from P. volitans spines.

The detection of all of these components from differ-
ent tissues and extractionmethods was outside the scope
of this work, but it is important to remember that with
our limited knowledge of the relative contribution of
venom components to in vitro activities, any of these
components could cause false positives in CTX activity
assays. Some, like the unidentified toxin isolated by
Nair et al. (1985), may be even more likely to survive
lipid-specific extraction methods. Thus, further research
into the diversity of toxins in lionfish tissues is necessary
to completely understand the potential for contamina-
tion of CTX assays.

There are severe consequences to inaccurate
ciguatoxins tests. Poisonings have direct and indirect
negative social and economic impacts. Even a few cases
of CFP can drastically alter the use of reef resources, and
fish avoidance can have an adverse economic impact
(Lewis 1986). In French Polynesia, for example, CFP
costs over $1 million dollars annually in lost productiv-
ity due to illness and more than $1 million in lost
earnings due to banned fish (Glaziou and Legrand
1994). If innate lionfish toxins are causing false posi-
tives on ciguatoxin tests, there is little hope of establish-
ing a stable fishery that could otherwise help to control
this worst of marine invasions.

Though the data reported here do not provide con-
clusive evidence of venom contamination, they provide

sufficient evidence for the re-evaluation of ciguatera
testing methods in lionfish and other venomous species.
Certainly caution is indicated in interpreting positive
results from CTX bioassays of invasive lionfish. While
there is likely no doubt that lionfish in areas with high
levels of ciguatera prevalence possess the same potential
danger as similar mesopredators, there is no evidence
that lionfish in ciguatera-free areas are a threat to public
health.
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